	1
_	
Nuclear Structure	
Nucleons	
 The particles in the nucleus of an atom Protons and Neutrons 	
1 Totolis and Neutrons	
	1
The number of protons in a nucleus is	
denoted by Z – Atomic (or proton) number	
The total number of nucleons is denoted	
by A – Mass or nucleon number	
The number of neutrons is denoted by N	
− N=A-Z	

Examples

¹H (hydrogen)

²H (deuterium)

³H (tritium)

 $^{238}_{92}$ U, $^{235}_{92}$ U (uranium)

Note:

The nuclei of hydrogen, deuterium and tritium are called protons, deuterons, and tritons respectively

The Mass Spectrometer

- The existence of isotopes can be demonstrated with a mass spectrometer
- Singly ionized ions of an element move through a pair of slits (to collimate the beam) and enter a region of electric and magnetic fields at right angles to each other

- By choosing a suitable value for the magnetic field, ions of a specific velocity can pass through undeflected (the magnetic and electric forces are equal)
- Thus only ions of a specific velocity pass through a second slit
- This arrangement allows ions of a selected velocity to pass through
- The selected ions then enter a second region of magnetic field where they are thus deflected into a circular path, hitting a photographic plate where they are recorded

,			
•			

• The radius of the path is proportional to the mass of the ions

$$R = \frac{mv}{eB}$$

- If all of the ions have the same mass, they will all hit at the same point
- If isotopes are present, the heavier ions will hit the plate further to the right
- Measurements of the radius allow one to determine the mass